By Topic

The application of Monte Carlo methods to the nonlinear filtering problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
T. Yoshimura ; Tokushima University, Tokushima, Japan ; T. Soeda

The minimum variance estimates of state variables in a noisy, nonlinear discrete-time system are evaluated by a Monte Carlo method. The a posteriori probability density function for state variables conditioned upon measurement data sequence is expanded into a series of orthonormal Hermite functions and numerically determined in a recursive form. The numerical results indicate that the proposed method can markedly improve the accuracy by using the quasi-random numbers.

Published in:

IEEE Transactions on Automatic Control  (Volume:17 ,  Issue: 5 )