Cart (Loading....) | Create Account
Close category search window

Estimation of the autoregressive parameters of a mixed autoregressive moving-average time series

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gersch, Will ; Purdue University, Lafayette, IN, USA

The problem of estimating the autoregressive parameters of a mixed autoregressive moving-average (ARMA) time series (of known order) using the output data alone is treated. This problem is equivalent to the estimation of the denominator terms of the scalar transfer function of a stationary, linear discrete time system excited by an unobserved unenrrelated sequence input by employing only the observations of the scalar output. The solution of this problem solves the problem of the identification of the dynamics of a white-noise excited continuous-time linear stationary system using sampled data. The latter problem was suggested by Bartlett in 1946. The problem treated here has appeared before in the engineering literature. The earlier treatment yielded biased parameter estimates. An asymptotically unbiased estimator of the autoregressive parameters is obtained as the solution of a modified set of Yule-Walker equations. The asymptotic estimator covariance matrix behaves like a least-squares parameter estimate of an observation set with unknown error covariances. The estimators are also shown to be unbiased in the presence of additive independent observation noise of arbitrary finite correlation time. An example illustrates the performance of the estimating procedures.

Published in:

Automatic Control, IEEE Transactions on  (Volume:15 ,  Issue: 5 )

Date of Publication:

Oct 1970

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.