By Topic

Formal solutions for a class of stochastic pursuit-evasion games

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Willman, W. ; Harvard University, Cambridge, MA, USA

A class of differential pursuit-evasion games is examined in which the dynamics are linear and perturbed by additive white Gaussian noise, the performance index is quadratic, and both players receive measurements perturbed independently by additive white Gaussian noise. Linear minimax solutions are characterized in terms of a set of implicit integro-differential equations. A game of this type also possesses a "certainty-coincidence" property, meaning that its minimax behavior coincides with that of the corresponding deterministic game in the event that all noise values are zero. This property is used to decompose the minimax strategies into sums of a certainty-equivalent term and error terms.

Published in:

Automatic Control, IEEE Transactions on  (Volume:14 ,  Issue: 5 )