By Topic

Two stochastic approximation procedures for identifying linear systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Holmes, J.K. ; California Institute of Technology, Pasadena, CA, USA

A Robbins-Monro [1] stochastic approximation procedure for identifying a finite memory time-discrete time-stationary linear system from noisy input-output measurements is developed. Two algorithms are presented to sequentially identify the linear system. The first one is derived, based on the minimization of the mean-square error between the unknown system and a model, and is shown to develop a bias which depends only on the variance of the input signal measurement error. Under the assumption that this variance is known a priori, a second algorithm is developed which, in the limit, identifies the unknown system exactly. The case when the covariance matrix of the random input sequence is not positive definite is also considered.

Published in:

Automatic Control, IEEE Transactions on  (Volume:14 ,  Issue: 3 )