By Topic

Compact single-chip W-band FMCW radar modules for commercial high-resolution sensor applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tessmann, A. ; Fraunhofer-Inst. fur Solare Energiesysteme, Freiburg, Germany ; Kudszus, S. ; Feltgen, T. ; Riessle, M.
more authors

Two compact single-chip 94-GHz frequency-modulated continuous-wave (FMCW) radar modules have been developed for high-resolution sensing under adverse conditions and environments. The first module contains a monolithic microwave integrated circuit (MMIC) consisting of a mechanically and electrically tunable voltage-controlled oscillator (VCO) with a buffer amplifier, 10-dB coupler, medium-power and a low-noise amplifier, balanced rat-race high electron-mobility transistor (HEMT) diode mixer, and a driver amplifier to increase the local-oscillator signal level. The overall chip-size of the FMCW radar MMIC is 2×3.5 mm2. For use with a single transmit-receive antenna, a 94-GHz microstrip hexaferrite circulator was implemented in the module. The radar sensor achieved a tuning range of 1 GHz, an output signal power of 1.5 mW, and a conversion loss of 2 dB. The second FMCW radar sensor uses an MMIC consisting of a varactor-tuned VCO with injection port, very compact transmit and receive amplifiers, and a single-ended resistive mixer. To enable single-antenna operation, the external circulator was replaced by a combination of a Wilkinson divider and a Lange coupler integrated on the MMIC. The circuit features coplanar technology and cascode HEMTs for compact size and low cost. These techniques result in a particularly small overall chip-size of only 2×3 mm2. The packaged 94-GHz FMCW radar module achieved a tuning range of 6 GHz, an output signal power of 1.5 mW, and a conversion loss of 5 dB. The RF performance of the radar module was successfully verified by real-time monitoring the time flow of a gas-assisted injection molding process.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:50 ,  Issue: 12 )