By Topic

A filter synthesis technique applied to the design of multistage broad-band microwave amplifiers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
J. -P. Rooney ; Inst. of Microwaves & Photonics, Leeds Univ., UK ; R. Parry ; I. Hunter ; R. D. Pollard

A method for designing multistage broad-band amplifiers based upon well-known filter synthesis techniques is presented. Common all-pole low-pass approximations are used to synthesize prototype amplifier circuits that may be scaled in frequency and impedance. All-pass filters introduced at the first stage are shown to improve input match while maintaining circuit performance less 6 dB gain. A theoretical comparison is made with the distributed amplifier and the cascaded single-stage distributed amplifier. Theoretically, a larger gain-bandwidth product is achieved using the synthesis technique. A proof-of-concept Butterworth low-pass two-stage amplifier was designed, simulated, and measured and achieved a flat gain performance of 1-4 GHz with a power gain of 14.5±1 dB close to the predicted 1-4.2 GHz, 15±1 dB.

Published in:

IEEE Transactions on Microwave Theory and Techniques  (Volume:50 ,  Issue: 12 )