By Topic

A statistical model for SILC in flash memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ielmini, D. ; Dipt. di Elettronica e Informazione, Politecnico di Milano, Italy ; Spinelli, A.S. ; Lacaita, A.L. ; Modelli, A.

The reliability of flash memories is strongly. limited by the stress-induced leakage current (SILC), which leads to accelerated charge-loss phenomena in a few anomalous cells. Estimating the reliability of large flash arrays requires that physically-based models for the statistical distribution of SILC are developed. In this paper, we show a physical model for the leakage mechanism in thin oxides, which is able us to explain the anomalous leakage-conduction in tail cells. The physical model is then used for a quantitative evaluation of the SILC distribution in large flash arrays. The new model can reproduce the statistics of SILC for a wide range of tunnel-oxide thickness, and can provide a straightforward estimation of the reliability for large flash arrays.

Published in:

Electron Devices, IEEE Transactions on  (Volume:49 ,  Issue: 11 )