By Topic

An error probability analysis of the optimum noncoherent multiuser detector for multipath and multiantenna diversity communications over Rayleigh-fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Russ ; Colorado Univ., Boulder, CO, USA ; M. K. Varanasi

The optimum noncoherent multiuser detector is obtained for generalized diversity symbol-synchronous communication systems that employ nonorthogonal multipulse modulation. A unified approach is adopted to simultaneously address various forms of diversity such as time, frequency, multipath, and/or receiver-amenna diversity. Upper and lower bounds on the average bit-error probability of the optimum noncoherent detector are derived. While these bounds are numerically computable, they are too complicated to give insights about the relative influence of system parameters on the essential behavior of the bit-error rate. To address this issue, an asymptotic (low noise) analysis of the bit-error probability is undertaken. It is shown that the upper and lower bounds are indeed asymptotically convergent. A formula for the asymptotic efficiency of the optimum noncoherent detector is thereby derived. Interestingly, the asymptotic efficiency is found to be positive, and independent of the signal strengths of the interfering users.

Published in:

IEEE Transactions on Communications  (Volume:50 ,  Issue: 11 )