By Topic

Multiuser detection for DS-CDMA UWB in the home environment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Qinghua Li ; Intel Labs, Intel Corp., Santa Clara, CA, USA ; Rusch, L.A.

We demonstrate the effectiveness of multiuser detection for an ultra-wideband (UWB) pulse based direct sequence spread spectrum system using code division multiple access. Extensive simulations were run using channel soundings of the 2-8 GHz band collected in a residential setting and characterized by a high level of multipath fragmentation. We show that the adaptive minimum mean square error (MMSE) multiuser detection (MUD) receivers are able to gather multipath energy and reject intersymbol and interchip interference for these channels to a much greater extent than RAKE receivers with 4 and 8 arms. We also demonstrate the adaptive MMSE is able to reject a narrowband IEEE 802.11a OFDM interferer, even for signal-to-interference ratio as severe as -30 dB. We show the adaptive MMSE exhibits only a 6 dB penalty relative to the single user case for the heavy multi-access interference (number of asynchronous users equal to spreading code length). The practical RAKE receivers were incapable of effectively rejecting either the strong narrowband interference or the heavily loaded wideband interference. Even more moderate levels of interference caused significant degradation in the performance of the practical RAKE receivers.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:20 ,  Issue: 9 )