By Topic

Characterization of ultra-wide bandwidth wireless indoor channels: a communication-theoretic view

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Win, M.Z. ; Lab. for Inf. & Decision Syst., MIT, Cambridge, MA, USA ; Scholtz, R.A.

An ultra-wide bandwidth (UWB) signal propagation experiment is performed in a typical modern laboratory/office building. The bandwidth of the signal used in this experiment is in excess of 1 GHz, which results in a differential path delay resolution of less than a nanosecond, without special processing. Based on the experimental results, a characterization of the propagation channel from a communications theoretic view point is described, and its implications for the design of a UWB radio receiver are presented. Robustness of the UWB signal to multipath fading is quantified through histograms and cumulative distributions. The all RAKE (ARAKE) receiver and maximum-energy-capture selective RAKE (SRAKE) receiver are introduced. The ARAKE receiver serves as the best case (bench mark) for RAKE receiver design and lower bounds the performance degradation caused by multipath. Multipath components of measured waveforms are detected using a maximum-likelihood detector. Energy capture as a function of the number of single-path signal correlators used in UWB SRAKE receiver provides a complexity versus performance tradeoff. Bit-error-probability performance of a UWB SRAKE receiver, based on measured channels, is given as a function of the signal-to-noise ratio and the number of correlators implemented in the receiver.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:20 ,  Issue: 9 )