Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Piezoresistive accelerometers for MCM package

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Plaza, J.A. ; Centro Nacional de Microelectron., CSIC, Madrid, Spain ; Collado, A. ; Cabruja, E. ; Esteve, J.

Describes the first steps carried out for the integration of piezoresistive accelerometers in an MCM-D (D-type multichip modules with flip-chip interconnection) package. The bulk micromachined accelerometer technology and its modification to comply with MCM-D packaging technology requirements are presented. The accelerometer technology is based on BESOI (Bond and Etch Back Silicon-On-Insulator) wafers. The main characteristic of this technology is the use of the buried silicon oxide layer as an etch stop and as a sacrificial layer. In addition, over-range protection and self-test systems are defined without any additional photolithographic step or process. The flip chip attachment requires solderable metals in the bump pads. In addition, a sealing ring has been defined around the movable parts of the sensors to protect them from the underfill used during the final packaging process. Cantilever beam accelerometers with a self-test system are presented as example of the combined technology. The design, simulation, fabrication and characterization of the devices prior to the MCM-D packaging are presented as well.

Published in:

Microelectromechanical Systems, Journal of  (Volume:11 ,  Issue: 6 )