By Topic

A thermal-bubble-actuated micronozzle-diffuser pump

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tsai, J.-H. ; Mech. Eng., Univ. of Michigan, Ann Arbor, MI, USA ; Liwei Lin

A thermal-bubble-actuated micropump by the principles of liquid/vapor phase transition and nozzle-diffuser flow regulation is successfully demonstrated. The micropump consists of a resistive heater, a pair of nozzle-diffuser flow controller and a 1 mm in diameter, 50 μm in depth pumping chamber. The actuation mechanism comes from periodically nucleating and collapsing thermal bubbles. A net flow is generated from the nozzle to the diffuser by the nozzle-diffuser flow controller. Two heater designs, single-bubble and dual-bubble actuation mode, have been investigated. In the single-bubble pumping mode, a maximum flow rate of 5 μl/min is measured when the driving pulse is 250 Hz at 10% duty cycle under an average power consumption of 1 W. A similar flow rate of 4.5 μl/min is achieved in the dual-bubble pumping mode, at the driving pulse of 5% duty cycle at 400 Hz with lower average power consumption, 0.5 W. The static pumping pressure is measured at a maximum value of 377 Pascal when the net volume flow rate is zero. As an application example in a microfluidic device, this valve-less micropump is used in a microfluidic system to enhance the fluid mixing by agitating the flows.

Published in:

Microelectromechanical Systems, Journal of  (Volume:11 ,  Issue: 6 )