By Topic

Optimal edge-based shape detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
H. Moon ; Center for Autom. Res., Maryland Univ., College Park, MD, USA ; R. Chellappa ; A. Rosenfeld

We propose an approach to accurately detecting two-dimensional (2-D) shapes. The cross section of the shape boundary is modeled as a step function. We first derive a one-dimensional (1-D) optimal step edge operator, which minimizes both the noise power and the mean squared error between the input and the filter output. This operator is found to be the derivative of the double exponential (DODE) function, originally derived by Ben-Arie and Rao (1994). We define an operator for shape detection by extending the DODE filter along the shape's boundary contour. The responses are accumulated at the centroid of the operator to estimate the likelihood of the presence of the given shape. This method of detecting a shape is in fact a natural extension of the task of edge detection at the pixel level to the problem of global contour detection. This simple filtering scheme also provides a tool for a systematic analysis of edge-based shape detection. We investigate how the error is propagated by the shape geometry. We have found that, under general assumptions, the operator is locally linear at the peak of the response. We compute the expected shape of the response and derive some of its statistical properties. This enables us to predict both its localization and detection performance and adjust its parameters according to imaging conditions and given performance specifications. Applications to the problem of vehicle detection in aerial images, human facial feature detection, and contour tracking in video are presented.

Published in:

IEEE Transactions on Image Processing  (Volume:11 ,  Issue: 11 )