Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Measurements of a wireless link in an industrial environment using an IEEE 802.11-compliant physical layer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Willig, A. ; Dept. of Electr. Eng., Tech. Univ. Berlin, Germany ; Kubisch, M. ; Hoene, C. ; Wolisz, A.

The design and simulation of coding schemes, medium access control (MAC), and link-layer protocols for future industrial wireless local area networks can be supported by some understanding of the statistical properties of the bit error patterns delivered by a wireless link (which is an ensemble of transmitter, channel, receiver, modems). The authors present results of bit error measurements taken with an IEEE 802.11-compliant radio modem in an industrial environment. In addition to reporting the most important results, they draw some conclusions for the design of MAC and link-layer protocols. Furthermore, they show that the popular Gilbert/Elliot model and a modified version of it are a useful tool for simulating bit errors on a wireless link, despite their simplicity and failure to match certain measured statistics.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:49 ,  Issue: 6 )