By Topic

Aggregating evidence in pavement management decision-making using belief functions and qualitative Markov tree

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Attoh-Okine, N.O. ; Dept. of Civil & Environ. Eng., Delaware Univ., Newark, DE, USA

This paper applies the combined use of qualitative Markov trees and belief functions (otherwise known as Dempster-Shafer theory of evidence), to pavement management decision-making. The basic concepts of the belief function approach-basic probability assignments, belief functions and plausibility functions-are discussed. This paper also discusses the construction of the qualitative Markov tree (join tree). The combined use of the two methods provides a framework for dealing with uncertainty, incomplete data, and imprecise information in the presence of multiple evidences on decision variables. The approach is very appropriate, since it presents more improved methodology and analysis than traditional probability methods applied in pavement management decision-making. Traditional probability theory as a mathematical framework for conceptualizing uncertainty, incomplete data and imprecise information has several shortcomings that have been augmented by several alternative theories. An example is presented to illustrate the construction of qualitative Markov trees, from the evidential network and the solution algorithm. The purpose of the paper is to demonstrate how the evidential network and the qualitative Markov tree can be constructed, and how the propagation of m-values can be handled in the network.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:32 ,  Issue: 3 )