Cart (Loading....) | Create Account
Close category search window

The Design of a High-Performance Error-Correcting Coding Scheme for the Canadian Broadcast Telidon System Based on Reed-Solomon Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mortimer, B. ; Carleton Univ., Ottawa, Ont., Canada ; Moore, M. ; Sablatash, M.

Error correction can greatly improve the performance and extend the range of broadcast teletext systems. In this paper, the requirements for an error-correcting scheme for broadcast teletext in North America (NABTS) are set down. An error-correction scheme which meets all these requirements is then described. The simplest case employs the one parity bit in each 8 bit byte and no suffix of parity check bits at the end of each data block. The next level also uses a single byte of parity check bits at the end of each data block. Adding a second byte of parity checks at the end of each data block results in a Reed-Solomon code, called theCcode, for each data block. Adding one data block of parity checks afterh - 1data blocks results in a set ofhdata packets being encoded into a bundle, in which verticalCcodes provide powerful interleaving. In a final alternative, two data blocks hold the check bytes for the vertical codewords, and the most powerful coding scheme, the double bundle code, results. The detailed mathematical definitions of the various codes are referred to or described, formulas for performance calculations are referred to, and performance curves are presented for the AWGN channel as well as for measured field data. These performance curves are discussed and compared to the performance of a difference set cyclic code, originally designed for the Japanese teletext system, which corrects any 8 bits in error in a packet.

Published in:

Communications, IEEE Transactions on  (Volume:35 ,  Issue: 11 )

Date of Publication:

Nov 1987

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.