By Topic

Two Parallel M/G/1 Queues where Arrivals Join the System with the Smaller Buffer Content

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Knessl, C. ; The Technological Institute, Northwestern Univ., Evanston, IL, USA ; Matkowsky, B. ; Schuss, Z. ; Tier, C.

We consider two parallel, infinite capacity, M/G/1 queues characterized by ( U_{1}(t), U_{2}(t) ) with U_{j}(t) denoting the unfinished work (buffer content) in queue j . A new arrival is assigned to the queue with the smaller buffer content. We construct formal (as opposed to rigorous) asymptotic approximations to the Joint stationary distribution of the Markov process ( U_{1}(t), U_{2}(t) ), treating separately the asymptotic limits of heavy traffic, light traffic, and large buffer contents. In heavy traffic, the stochastic processes U_{1}(t) + U_{2}(t) and U_{2}(t) - U_{1}(t) become independent, with the distribution of U_{1}(t) + U_{2}(t) identical to the heavy traffic waiting time distribution in the standard M/G/2 queue, and the distribution of U_{2}(t) - U_{1}(t) closely related to the tail of the service time density. In light traffic, we obtain a formal expansion of the stationary distribution in powers of the arrival rate.

Published in:

Communications, IEEE Transactions on  (Volume:35 ,  Issue: 11 )