By Topic

Probability of Error Analyses of a BFSK Frequency-Hopping System with Diversity Under Partial-Band Jamming Interference--Part III: Performance of a Square-Law Self-Normalizing Soft Decision Receiver

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Miller, M.E. ; J. S. Lee Associates, Inc., Arlington, VA, USA - 1984 ; Lee, J.S. ; Kadrichu, A.

Linear and nonlinear diversity combining receivers for multihops-per-bit FH/BFSK waveforms in the partial-band noise jamming environment were studied in Parts I and II. It was shown that nonlinear combining receivers (Part II) can achieve a diversity gain for error rate improvement, while the linear combining receiver (Part I) cannot. The two types of nonlinear combining receivers treated in Part II required knowledge of system operational parameters for their optimum performance, such as measured noise power and the signal energy level at the receiver. In this paper, a self-normalizlng nonlinear combining receiver is shown to achieve a diversity gain without knowledge of signal or jamming levels, unlike the nonlinear schemes studied previously. The worst-case error probability performance of the self-normalizing receiver is obtained with and without system thermal noise. The numerical results are compared to those for the receivers studied earlier.

Published in:

Communications, IEEE Transactions on  (Volume:34 ,  Issue: 7 )