By Topic

Maximum Likelihood Carrier Phase Recovery for Linear Suppressed-Carrier Digital Data Modulations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Pooi Kam ; Univ., of Singapore, Kent Ridge, Singapore

The problem of ML estimation of the Phase of a general data-modulated carrier is considered. The shortcomings of current iterative approaches to the problem are pointed out, and the correct conceptual approach is proposed. The true ML estimator is then obtained and found to be nonimplementable. However, by specializing to limits of high and low SNR, the general ML estimator is shown to reduce to implementable DA and NDA ML estimators, respectively. The DA receiver's performance in terms of phase tracking and symbol error probability can be analyzed, and even the effects of past decision errors on current system performance can be assessed. For circular signal constellations, the DA receiver has a simple and totally linear structure which is easy to implement. The NDA ML estimator is shown to be equivalent to the common carrier loops. Our emphasis here on explicit computation of the ML phase estimate from the past received signal leads to detection strategies which do not require a carrier loop and a VCO for coherent detection.

Published in:

IEEE Transactions on Communications  (Volume:34 ,  Issue: 6 )