By Topic

Performance of Block Cosine Image Coding with Adaptive Quantization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Modestino, J.W. ; Rensselaer Polytechnic Institute, Troy, NY, USA ; Farvardin, N. ; Ogrinc, M.

Quantizers for block transform image coding systems are typically designed under the assumption of Gaussian statistics for the transform coefficients. While convincing arguments can be provided in support of this approach, empirical evidence is presented demonstrating that, except possibly for the dc term, wide departures from Gaussian behavior can be expected for real-world imagery at typical block sizes. In this paper we describe the performance of a block cosine image coding system with an adaptive quantizer matched to the statistics of the transform coefficients. The adaptive quantizer is based upon a recently developed algorithm which employs a training sequence in the design procedure. At encoding rates of approximately 1 bit/pixel and above, this approach results in significant improvement in reconstructed image quality compared to fixed quantization schemes designed under the Gaussian assumption. For rates much below 1 bit/pixel the relative improvement is negligible.

Published in:

Communications, IEEE Transactions on  (Volume:33 ,  Issue: 3 )