Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Echo Cancellation of Voiceband Data Signals Using Recursive Least Squares and Stochastic Gradient Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Honig, M.L. ; Bell Comm. Res., Morristown, NJ

The convergence properties of adaptive least squares (LS) and stochastic gradient (SG) algorithms are studied in the context of echo cancellation of voiceband data signals. The algorithms considered are the SG transversal, SG lattice, LS transversal (fast Kalman), and LS lattice. It is shown that for the channel estimation problem considered here, LS algorithms converge in approximately 2N iterations where N is the order of the filter. In contrast, both SG algorithms display inferior convergence properties due to their reliance upon statistical averages. Simulations are presented to verify this result, and indicate that the fast Kalman algorithm frequently displays numerical instability which can be circumvented by using the lattice structure. Finally, the equivalence between an LS algorithm and a fast converging modified SG algorithm which uses a maximum length input data sequence is shown.

Published in:

Communications, IEEE Transactions on  (Volume:33 ,  Issue: 1 )