By Topic

Hamming Coding of DCT-Compressed Images Over Noisy Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Comstock ; Teledyne Geotech, Garland, TX, USA ; J. Gibson

Theoretical and simulation results of using Hamming codes with the two-dimensional discrete cosine transform (2D-DCT) at a transmitted data rate of 1 bit/pixel over a binary symmetric channel (BSC) are presented. The design bit error rate (BER) of interest is 10-2. The (7, 4), (15, 11), and (31, 26) Hamming codes are used to protect the most important bits in each 16 by 16 transformed block, where the most important bits are determined by calculating the mean squared reconstruction error (MSE) contributed by a channel error in each individual bit. A theoretical expression is given which allows the number of protected bits to achieve minimum MSE for each code rate to be computed. By comparing these minima, the best code and bit allocation can be found. Objective and subjective performance results indicate that using the (7, 4) Hamming code to protect the most important 2D-DCT coefficients can substantially improve reconstructed image quality at a BER of 10-2. Furthermore, the allocation of 33 out of the 256 bits per block to channel coding does not noticeably degrade reconstructed image quality in the absence of channel errors.

Published in:

IEEE Transactions on Communications  (Volume:32 ,  Issue: 7 )