By Topic

Data Compression Using Adaptive Coding and Partial String Matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Cleary ; Calgary Univ., Calgary, Alta., Canada ; I. Witten

The recently developed technique of arithmetic coding, in conjunction with a Markov model of the source, is a powerful method of data compression in situations where a linear treatment is inappropriate. Adaptive coding allows the model to be constructed dynamically by both encoder and decoder during the course of the transmission, and has been shown to incur a smaller coding overhead than explicit transmission of the model's statistics. But there is a basic conflict between the desire to use high-order Markov models and the need to have them formed quickly as the initial part of the message is sent. This paper describes how the conflict can be resolved with partial string matching, and reports experimental results which show that mixed-case English text can be coded in as little as 2.2 bits/ character with no prior knowledge of the source.

Published in:

IEEE Transactions on Communications  (Volume:32 ,  Issue: 4 )