By Topic

An Improved Adaptive Predictor in DPCM Based on the Kalman Filter and Its Application to Handwriting Signal Encoding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yasuhara, M. ; Institute for Communication Sciences, Univ. of Electro-Communications, Tokyo, Japan ; Yasumoto, Y.

A method of handwriting signal encoding based on adaptive linear predictive coding (ALPC) is studied. The ALPC is a form of DPCM which uses a sequentially adaptive predictor in which a sequential estimation algorithm is used to update predictor coefficients. To improve the estimates of the predictor coefficients in the presence of quantization noise, Kalman filtering has been investigated for its feasibility. This results in improvements of not only the estimation of the predictor coefficients, but the signal-to-quantization-noise ratio (SNR) of the signals reconstructed at the receiver as well. Computer simulations have verified that the ALPC system employing the Kalman filter promises high performance and feasibility at the rate of 192 bits/s when applied to handwriting signal encoding.

Published in:

Communications, IEEE Transactions on  (Volume:32 ,  Issue: 4 )