Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

A Modified Selective-Repeat Type-II Hybrid ARQ System and Its Performance Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Ming Wang ; Northwestern Telecommunication Engineering Institute, China ; Shu Lin

The hybrid ARQ scheme with parity retransmission for error control, recently proposed by Lin and Yu [1], [2], is quite robust. This scheme provides both high system throughput and high system reliability. In this paper, a modified Lin-Yu hybrid ARQ scheme is presented. The modified scheme provides a slightly better throughput performance than the original Lin-Yu scheme; however, it is more flexible in utilizing the error-correction power of a code. The modified scheme can be incorporated with a rate 1/2 convolutional code using Viterbi decoding. Furthermore, the pure selectiverepeat ARQ is a degenerated case of the modified scheme in selective mode. Lin and Yu analyzed their scheme only for a receiver buffer of size N where N is the number of data blocks that can be transmitted in a round-trip delay interval. No analysis for other buffer sizes was given. In this paper, the throughput performance of the modified Lin-Yu scheme is analyzed for any size of receiver buffer. Consequently, the throughput efficiency of the pure selective-repeat ARQ for any receiver buffer size can be obtained. We also show that the modified scheme achieves the same order of reliability as a pure ARQ scheme.

Published in:

Communications, IEEE Transactions on  (Volume:31 ,  Issue: 5 )