By Topic

Modular Verification of Computer Communication Protocols

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hailpern, B. ; IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA ; Owicki, S.

Programs that implement computer communications protocols can exhibit extremely complicated behavior, and neither informal reasoning nor testing is reliable enough to establish their correctness. In this paper we discuss the application of modular program verification techniques to protocols. This approach is more reliable than informal reasoning, but has an advantage over formal reasoning based on finite-state models, the complexity of the proof need not grow unmanageably as the size of the program increases. Certain tools of concurrent program verification that are especially useful for protocols are presented, history variables that record sequences of input and output values, temporal logic for expressing properties that must hold in a future system state such as eventual receipt of a message), and module specification and composition rules. The use of these techniques is illustrated by verifying two data transfer protocols from the literature: the alternating bit protocol and a protocol proposed by Stenning.

Published in:

Communications, IEEE Transactions on  (Volume:31 ,  Issue: 1 )