By Topic

Continuous Phase Chirp (CPC) Signals for Binary Data Communication-Part I: Coherent Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hirt, W. ; IBM Zurich Res. Lab., Zurich, Switzerland ; Pasupathy, S.

Chirp (linear FM) signals provide an attractive wideband digital modulation scheme in applications where interference rejection is important. This paper evaluates the error rate (performance) of coherent binary continuous phase chirp (CPC) receivers operating on the additive white Gaussian noise (AWGN) channel and determines the improvement in performance made possible by multiple bit observation. In particular, it is shown that a receiver with two bit observation, giving up to 1.75 dB signal-to-noise ratio (SNR) improvement over the optimum single bit chirp receiver, provides a good compromise between SNR gain and system complexity. Furthermore, a simple, suboptimum, average matched filter (AMF) receiver is analyzed, and it is shown that a two-bit observation is optimum, giving a performance equivalent to that of antipodal phaseshift keying (PSK). An implementation of this receiver in the form of in-phase and quadrature demodulators is also derived.

Published in:

Communications, IEEE Transactions on  (Volume:29 ,  Issue: 6 )