By Topic

Effects of Packet Losses in Waveform Coded Speech and Improvements Due to an Odd-Even Sample-Interpolation Procedure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
N. Jayant ; Bell Labs., Murray Hill, NJ, USA ; S. Christensen

We have studied the effects of random packet losses in digital speech systems based on 12-bit PCM and 4-bit adaptive DPCM coding. The effects are a function of packet length B and probability of packet loss PL. We have also studied tbe benefits of an odd-even sample-interpolation procedure that mitigates these effects (at the cost of increased decoding delay). The procedure is based on arranging a 2B -block of codewords into two B -sample packets, an odd-sample packet and an even-sample packet. If one of these packets is lost, the odd (or even) samples of the 2B -block are estimated from the even (or odd) samples by means of adaptive interpolation. Perceptual considerations indicate that packet lengths most robust to losses are in the range 16-32 ms, irrespective of whether interpolation is used or not. With these packet lengths, tolerable PLvalues, which are strictly input-speech-dependent, can be as high as 2 to 5 percent without interpolation and 5 to 10 percent with interpolation. These observations are based on a computer simulation with three sentence-length speech inputs, and on informal listening tests.

Published in:

IEEE Transactions on Communications  (Volume:29 ,  Issue: 2 )