Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Packet Switching in Radio Channels: New Conflict-Free Multiple Access Schemes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kleinrock, L. ; Univ. of California, Los Angeles, CA ; Scholl, M.

We study new access schemes for a population of geographically distributed data users who communicate with each other and/or with a central station over a multiple-access broadcast ground radio packet-switching channel. We introduce and analyze alternating priorities (AP), round robin (RR), and random order (RO) as new conflict-free methods for multiplexing buffered users without control from a central station. These methods are effective when the number of users is not too large; as the number grows, a large overhead leads to a performance degradation. To reduce this degradation, we consider a natural extension of AP, called minislotted alternating priorities (MSAP) which reduces the overhead and is superior to fixed assignment, polling, and known random access schemes under heavy traffic conditions. At light input loads, only random access schemes outperform MSAP when we have a large population of users. In addition, and of major importance, is the fact that MSAP does not require control from a central station.

Published in:

Communications, IEEE Transactions on  (Volume:28 ,  Issue: 7 )