By Topic

Charge-Coupled Device (CCD) Adaptive Discrete Analog Signal Processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
White, M.H. ; Westinghouse Electric Corp., Baltimore, MD ; Mack, I.A. ; Borsuk, G.M. ; Lampe, D.
more authors

A CCD adaptive signal processor is described which uses a so-called "clipped-data" least mean square (LMS) error algorithm to optimize the selection of tap weights in a CCD filter. A detailed description of a 16-tap monolithic silicon CCD analog adaptive filter is also presented. The filter is comprised of a basic linear combiner formed with a nondestructively tapped CCD analog delay line and electrically reprogrammable MOS analog conductances as the tap weights. Two methods of varying the analog conductance are discussed: 1) variable VGSwith fixed threshold voltage VTand 2) variable VTwith fixed VGS. The former is performed with a CCD bidirectional charge control weight adjustment, whereas the latter is accomplished with MNOS memory transistors. To demonstrate the feasibility of adaptive analog signal processing, a 2-tap weight CCD adaptive filter is described and experimental results presented. Applications include optimum filtering, prediction, noise cancellation, and system modeling.

Published in:

Communications, IEEE Transactions on  (Volume:27 ,  Issue: 2 )