By Topic

Real-Time Minimal-Bit-Error Probability Decoding of Convolutional Codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lin-nan Lee ; Univ. of Notre Dame, Notre Dame, Ind., USA

A recursive procedure is derived for decoding of rateR = 1/nbinary convolutional codes which minimizes the probability of the individual decoding decisions for each information bit, subject to the constraint that the decoding delay be limited to Δ branches. This new decoding algorithm is similar to, but somewhat more complex than, the Viterbi decoding algorithm. A "real-time," i.e., fixed decoding delay, version of the Viterbi algorithm is also developed and used for comparison to the new algorithm on simulated channels. It is shown that the new algorithm offers advantages over Viterbi decoding in soft-decision applications, such as in the inner coding system for concatenated coding.

Published in:

Communications, IEEE Transactions on  (Volume:22 ,  Issue: 2 )