By Topic

The Effect of Gaussian Error in Maximal Ratio Combiners

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Gans, M.J. ; AT & T Bell Lab., Holmdel, NJ, USA

In a fading channel, maximal ratio diversity combilling improves the average signal-to-noise ratio over thatof a single branch in proportion to the number of diversity branches combined. However, its main advantage is the reduction of the probability of deep fades. The effect of Gaussian errors in the combiner weighting factors on the probability distribution of the output signal-to-noise ratio is computed. The limits on allowable error for a specified probability of fades below any given level are indicated. The results are applied to a mobile radio example in which the weighting factor is determined from a pilot transmitted along with the signal. To keep the pilot from overlapping the signal, they are separated either in frequency or in time. In this case the Gaussian error is due to decorrelation of the pilot from the signal either because their frequency separation or their time separation is too large.

Published in:

Communication Technology, IEEE Transactions on  (Volume:19 ,  Issue: 4 )