By Topic

The Design of a Pulse-Position Modulated Optical Communication System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. Karp ; University of Southern California, Los Angeles, Calif. ; R. Gagliardi

In recent literature the advantages of an idealized narrow-width pulse-position modulated (PPM) optical communication system, using coherent sources and direct photodetection, have been shown. In this paper the practical design of such an operating PPM link is considered. System performance in terms of error probabilities and information rates is derived in terms of key parameters, such as power levels, number of PPM signals, pulse width, and bandwidths. Both background radiation and receiver thermal noise are included. Design procedures utilizing this data are outlined. Whenever possible, optimal design values and parameter tradeoffs, in terms of maximizing information rate or minimizing transmitter power, are shown. The effect on performance of photomultipliers and their inherent statistics is also presented. Although the basic analysis is derived in terms of photon "counts," the necessary system optics equations are introduced to allow for overall optical hardware design. The primary underlying assumption is that synchronization is maintained at all times between the transmitter and receiver.

Published in:

IEEE Transactions on Communication Technology  (Volume:17 ,  Issue: 6 )