By Topic

Intelligent monitoring and control of semiconductor manufacturing equipment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Murdock, J.L. ; Stanford Univ., CA, USA ; Hayes-Roth, B.

The use of AI methods to monitor and control semiconductor fabrication in a state-of-the-art manufacturing environment called the Rapid Thermal Multiprocessor is described. Semiconductor fabrication involves many complex processing steps with limited opportunities to measure process and product properties. By applying additional process and product knowledge to that limited data, AI methods augment classical control methods by detecting abnormalities and trends, predicting failures, diagnosing, planning corrective action sequences, explaining diagnoses or predictions, and reacting to anomalous conditions that classical control systems typically would not correct. Research methodology and issues are discussed, and two diagnosis scenarios are examined.<>

Published in:

IEEE Expert  (Volume:6 ,  Issue: 6 )