Cart (Loading....) | Create Account
Close category search window
 

Classifying cells for cancer diagnosis using neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Moallemi, C. ; MIT, Cambridge, MA, USA

A computer-based system for diagnosing bladder cancer is described. Typically, an object falls into one of two classes: Well or Not-well. The Well class contains the cells that will actually be useful for diagnosing bladder cancer; the Not-well class includes everything else. Several descriptive features are extracted from each object in the image and then fed to a multilayer perceptron, which classifies them as Well or Not-well. The perceptron's superior classification abilities reduces the number of computer misclassification errors to a level tolerable for clinical use. Also, the perceptron's parallelism and other aspects of this implementation lend it to extremely fast computation, thus providing accurate classification at an acceptable speed.<>

Published in:

IEEE Expert  (Volume:6 ,  Issue: 6 )

Date of Publication:

Dec. 1991

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.