Cart (Loading....) | Create Account
Close category search window

Superconducting bandpass ΔΣ modulator with 2.23-GHz center frequency and 42.6-GHz sampling rate

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Bulzacchelli, J.F. ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; Hae-Seung Lee ; Misewich, James A. ; Ketchen, M.B.

This paper presents a superconducting bandpass ΔΣ modulator for direct analog-to-digital conversion of radio frequency signals in the gigahertz range. The design, based on a 2.23-GHz microstrip resonator and a single flux quantum comparator, exploits several advantages of superconducting electronics: the high quality factor of resonators, the fast switching speed of the Josephson junction, natural quantization of voltage pulses, and high circuit sensitivity. The modulator test chip includes an integrated acquisition memory for capturing output data at sampling rates up to 45 GHz. The small size (256 b) of the acquisition memory limits the frequency resolution of spectra based on standard fast Fourier transforms. Output spectra with enhanced resolution are obtained with a segmented correlation method. At a 42.6-GHz sampling rate, the measured SNR is 49 dB over a 20.8-MHz bandwidth, and a full-scale (FS) input is -17.4 dBm. At a 40.2-GHz sampling rate, the measured in-band noise is -57 dBFS over a 19.6-MHz bandwidth. The modulator test chip contains 4065 Josephson junctions and dissipates 1.9 mW at T=4.2 K.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:37 ,  Issue: 12 )

Date of Publication:

Dec 2002

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.