By Topic

Generation of object descriptions from range data using feature extraction by demands

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. Merat ; Case Western Reserve University, Cleveland, Ohio ; Hsianglung Wu

A new method, called feature extraction by demands (FED), for generating an object description concurrently at different feature levels will be described. An object is described in terms of features which include points, surface patches, edges, corners, and surfaces. These features form a feature space which is the base used to decompose the feature extraction process into different levels. FED provides a method to generate partial descriptions about objects from partially processed range data at different feature levels. The partial descriptions become a feed-back to guide the feature extraction process to extract more detailed information from interesting areas which can then be used to refine the object description. Regions which are not perceived to contain useful infomation will be ignored in further processing. As a more complete object description is generated, FED converges from bottom-up image processing to top-down hypotheses verification to generate complete hierarchical object descriptions.

Published in:

Robotics and Automation. Proceedings. 1987 IEEE International Conference on  (Volume:4 )

Date of Conference:

Mar 1987