By Topic

The optimal design of robot drive system--Actuator gains

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Ching-Cheng Wang ; Virginia Polytechnic Institute and State University, Blacksburg, Virginia

The robot drive system has been previously designed to achieve optimal performance in the acceleration space by matching the gear ratios and actuator impedances. In this paper, the design effort on the robot drive system is continued to achieve the optimal performance measured in the velocity and angular velocity space. Design variables are first identified to be actuator gains. Then, the speed hull geometry of a design is analyzed and an appropriate performance measurement of this design is explored. To locate the optimal design, efficient algorithms dedicated to speed hull constructions are identified and the steepest descent direction, is derived to assist in searching for the optimal design. It is found that the objective function of the optimal design problem is not convex and a local optimal design shouldn't be mistaken as the global optimal design. However, for drive systems built with low gear ratios, the nonlinear effects are negligible and the objective function is convex. Therefore, a local optimal design is the global optimal design.

Published in:

Robotics and Automation. Proceedings. 1987 IEEE International Conference on  (Volume:4 )

Date of Conference:

Mar 1987