By Topic

Improvement of robot overshoot by motor controller design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kuang Wei ; Ford Motor Company, Dearborn, Michigan, U.S.A. ; R. Meier ; F. King

A number of industrial robots today have relatively good repeatability, yet, lack good accuracy and stability at high speeds. This paper presents an approach to measuring the positional overshoot of a six-axis revolute robot and a motor controller scheme to improve this problem. Positional accuracy data were collected for various speed ranges to characterize the overshoot phenomenon. This problem, to a great extent, was attributed to the controller design in which a simple positional feedback law was used to drive a stepper motor on each joint of the robot. To compensate for this, a second-order model for the motor and an optimal control law, which comprises position and velocity feedback, are proposed to improve the stability of the motor. A single-axis motion control system was developed to simulate the joint motion of the robot, and to evaluate the control scheme. Simulation results show that significant improvement in overshoot is achieved by the new controller.

Published in:

Robotics and Automation. Proceedings. 1986 IEEE International Conference on  (Volume:3 )

Date of Conference:

Apr 1986