By Topic

Adaptive friction compensation in dc-motor drives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Canudas, C. ; Laboratoire D''Automatique de Grenoble, Saint Martin D''Heres, France ; Astrom, K. ; Braun, K.

A control scheme is proposed where the nonlinear effects of friction are compensated adaptively. When the friction is compensated, the motor drive can approximately be described by a constant coefficient linear model. Standard methods can be applied to design a regulator for such a model. This results in a control law which is a combination of a fixed linear controller and an adaptive part which compensates for nonlinear friction effects. Experiments have clearly shown that both static and dynamic friction have nonsymmetric characteristics. They depend on the direction of motion. This is considered in the design of the adaptive friction compensation. The proposes scheme has been implemented and tested on a laboratory prototype with good results. The control law is implemented on an IBM PC. The ideas, algorithm, and experimental results are described. The results are relevant for many precision drives, such as those found in industrial robots.

Published in:

Robotics and Automation, IEEE Journal of  (Volume:3 ,  Issue: 6 )