By Topic

Effect of kinematics on motion planning for planar robot arms moving amidst unknown obstacles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lumelsky, Vladimir J. ; Yale University, New Haven, CT, USA

An approach of dynamic path planning (DPP) was introduced elsewhere, and nonheuristic algorithms were described for planning collision-free paths for a point automaton moving in an environment filled with unknown obstacles of arbitrary shape. The DPP approach was further extended to a planar robot arm with revolute joints; in this case, every point of the robot body is subject to collision. Under the accepted model, the robot, using information about its immediate surroundings provided by the sensory feedback, continuously (dynamically) generates its path. Various kinematic configurations of planar arms with revolute and sliding joints are analyzed in this paper from the standpoint of applying the same strategy. It is shown that, depending on the arm kinematics, specific modifications must be introduced in the path planning algorithm to preserve convergence. The approach presents an attractive method for robot motion planning in unstructured environments with uncertainty.

Published in:

Robotics and Automation, IEEE Journal of  (Volume:3 ,  Issue: 3 )