Cart (Loading....) | Create Account
Close category search window
 

The ground surveillance robot (GSR): An autonomous vehicle designed to transit unknown terrain

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Harmon, S. ; Robot Intelligence International, San Diego, CA, USA

The Ground Surveillance Robot (GSR) project has proceeded continuously since the Fall of 1980, and in that time an autonomous vehicle design and some degree of implementation has been achieved. The vehicle design has been partitioned into sensor, control, and planning subsystems. A distributed blackboard scheme has been developed which provides the mechanism by which these subsystems are coordinated. Vehicle position and orientation are supplied by vehicle attitude and navigation sensor subsystems. Obstacle avoidance capability has been implemented by fusing information from vision and acoustic ranging sensors into local goals and avoidance points. The influence of these points is combined through potential field techniques to accomplish obstacle avoidance control. Distant terrain characteristics are identified using information from a gray-level vision system, a color vision system, and a computer-controlled laser ranging sensor. These characteristics are used by a general planning engine to develop the desired path to a visible goal in the direction of the final goal. Progress to the final goal consists of a succession of movements from one distant but visible intermediate goal to another. The experience from implementing this autonomous vehicle has indicated the need for an integrated set of debugging tools which make the faults in subsystem hardware and software more distinguishable.

Published in:

Robotics and Automation, IEEE Journal of  (Volume:3 ,  Issue: 3 )

Date of Publication:

June 1987

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.