By Topic

Parallel processing of robot-arm control computation on a multimicroprocessor system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kasahara, H. ; Waseda University, Tokyo, Japan ; Narita, S.

A parallel-processing scheme is described for robot-arm control computation on any number of parallel processors. The scheme employs two multiprocessor scheduling algorithms called, respectively, depth first/implicit heuristic search (DF/IHS) and critical path/most immediate successors first (CP/MISF); these were recently developed by the authors. The scheme is applied to the parallel processing of dynamic control computation for the Stanford manipulator. In particular, the proposed algorithms are applied to the computation of the Newton-Euler equations of motion for the Stanford manipulator and implemented on a multimicroprocessor system. The test result was so successful that the use of six processor pairs in parallel could attain the processing time of 5.37 ms. It is also shown that the proposed parallel-processing scheme is applicable to an arbitrary number of processors.

Published in:

Robotics and Automation, IEEE Journal of  (Volume:1 ,  Issue: 2 )