By Topic

Iterative reconstruction methods using regularization and optimal current patterns in electrical impedance tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
P. Hua ; Siemens Gammasonics Inc., Hoffman Estates, IL, USA ; E. J. Woo ; J. G. Webster ; W. J. Tompkins

An iterative reconstruction method which minimizes the effects of ill-conditioning is discussed. Based on the modified Newton-Raphson algorithm, a regularization method which integrates prior information into the image reconstruction was developed. This improves the conditioning of the information matrix in the modified Newton-Raphson algorithm. Optimal current patterns were used to obtain voltages with maximal signal-to-noise ratio (SNR). A complete finite element model (FEM) was used for both the internal and the boundary electric fields. Reconstructed images from phantom data show that the use of regularization optimal current patterns, and a complete FEM model improves image accuracy. The authors also investigated factors affecting the image quality of the iterative algorithm such as the initial guess, image iteration, and optimal current updating

Published in:

IEEE Transactions on Medical Imaging  (Volume:10 ,  Issue: 4 )