By Topic

Theory and design of uniform DFT, parallel, quadrature mirror filter banks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this paper, the theory of uniform DFT, parallel, quadrature mirror filter (QMF) banks is developed. The QMF equations, i.e., equations that need to be satisfied for exact reconstruction of the input signal, are derived. The concept of decimated filters is introduced, and structures for both analysis and synthesis banks are derived using this concept. The QMF equations, as well as closed-form expressions for the synthesis filters needed for exact reconstruction of the input signal x(n) , are also derived using this concept. In general, the reconstructed. signal \hat{x}(n) suffers from three errors: aliasing, amplitude distortion, and phase distortion. Conditions for exact reconstruction (i.e., all three distortions are zero, and \hat{x}(n) is equal to a delayed version of x(n)) of the input signal are derived in terms of the decimated filters. Aliasing distortion can always be completely canceled. Once aliasing is canceled, it is possible to completely eliminate amplitude distortion (if suitable IIR filters are employed) and completely eliminate phase distortion (if suitable FIR filters are employed). However, complete elimination of all three errors is possible only with some simple, pathalogical stable filter transfer functions. In general, once aliasing is canceled, the other distortions can be minimized rather than completely eliminated. Algorithms for this are presented. The properties of FIR filter banks are then investigated. Several aspects of IIR filter banks are also studied using the same framework.

Published in:

Circuits and Systems, IEEE Transactions on  (Volume:33 ,  Issue: 12 )