By Topic

Efficient and multiplierless design of FIR filters with very sharp cutoff via maximally flat building blocks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

A new design technique for linear-phase FIR filters, based on maximally flat buildiing blocks, is presented. The design technique does not involve iterative approximations and is, therefore, fast. It gives rise to filters that have a monotone stopband response, as required in some applications. The technique is partially based on an interpolative scheme. Implementation of the obtained filter designs requires a much smaller number of multiplications than maximally flat (MAXFLAT) FIR filters designed by the conventional approach. A technique based on FIR spectral transformations to design new multiplierless FIR filter structures is then advanced, and multiplierless implementations for sharp cutoff specifications are included.

Published in:

Circuits and Systems, IEEE Transactions on  (Volume:32 ,  Issue: 3 )