By Topic

Nodal analysis of switched-capacitor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Switched-capacitor (SC) networks comprise capacitors interconnected by an array of periodically operated switches. Such networks are particularly attractive in light of the high circuit density possible with MOS integrated circuit technology and hybrid integrated circuits using thin-film and silicon technology. The paper describes the analysis of SC networks by using nodal charge equations. It is shown that SC networks are time-variant sampled-data networks, which can be viewed as tandem connected four-ports in the z -domain. One pair of ports is viewed as a signal path corresponding to the even time slots, the other pair of ports as a path corresponding to the odd time slots of the periodically operated switches. In a subsequent publication the authors will show how four-port equivalent circuits in the z-domain of six basic building blocks can be used for the description of any SC network. This method allows the direct use of traditional network analysis tools like the transmission matrix for deriving transfer functions. The method ultimately leads to a two-port analysis of SC networks in which conventional two-port theory can be applied.

Published in:

Circuits and Systems, IEEE Transactions on  (Volume:26 ,  Issue: 2 )