By Topic

On the irreducible cascade synthesis of a system with a real rational transfer matrix

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

In this paper, the problem of the irreducible synthesis of a real rational transfer matrix as a cascade (tandem connection) of first and second degree real systems is considered. A number of theoretical and practical results concerning the possibility of such a realization are deduced. In the process, the following results are obtained: 1) general forms for first and second degree real systems, 2) necessary and sufficient conditions for the extraction of a real first or second degree matrix, 3) a synthesis algorithm for a real rational transfer matrix as a cascade of first and second degree real systems, and 4) examples of situations where the real matrix cannot be so factored, even when it can be complex factored. The case where no cascade realization is available is rare, but possible. These results are of interest in simulation, in active and digital filter design of multiple input multiple output systems.

Published in:

Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 9 )