By Topic

The simplicial approximation approach to design centering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

The basis of a method for designing circuits in the face of parameter uncertainties is described. This method is computationally cheaper than those methods which employ Monte Carlo analysis and nonlinear programming techniques, gives more useful information, and more directly addresses the central problem of design centering. The method, called simplicial approximation, locates and approximates the boundary of the feasible region of an n -dimensional design space with a polyhedron of bounding ( n - 1 )-simplices. The design centering problem is solved by determining the location of the center of the maximal hyperellipsoid inscribed within this polyhedron. The axis lengths of this ellipsoid can be used to solve the tolerance assignment problem. In addition, this approximation can be used to estimate the yield by performing an inexpensive Monte Carlo analysis in the parameter space without any need for the usual multitude of circuit simulations.

Published in:

Circuits and Systems, IEEE Transactions on  (Volume:24 ,  Issue: 7 )