By Topic

Roundoff noise bounds derived from coefficient sensitivities for digital filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

The sensitivities of the transfer function of a digital filter with respect to its coefficients are utilized to derive lower bounds on the roundoff noise output in the cases of L_{\infty } and L_{\infty } scaling for fixed-point arithmetic. General bounds are produced which apply to any filter structure if rounding is performed after multiplication and the filter has already been scaled. For the parallel and cascade forms, alternate bounds are derived which apply to rounding after multiplication or summation and which do not require prior scaling. The alternate bounds arethus independent (or nearly so) of pairing, ordering, and transposition. Examples are presented which show that the bounds are reasonably tight.

Published in:

IEEE Transactions on Circuits and Systems  (Volume:23 ,  Issue: 8 )